

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY

FEBRUARY/MARCH 2017

MEMORANDUM

MARKS: 200

This memorandum consists of 19 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	B✓	(1)
1.2	D✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	B✓	(1)
1.6	D 🗸	(1)
1.7	A ✓	(1)
1.8	В ✓	(1)
1.9	A ✓	(1)
1.10	B √	(1)
1.11	B √	(1)
1.12	В ✓	(1)
1.13	D✓	(1)
1.14	D✓	(1)
1.15	A ✓	(1)
1.16	C✓	(1)
1.17	A✓	(1)
1.18	В ✓	(1)
1.19	В ✓	(1)
1.20	A ✓	(1) [20]

QUESTION 2: SAFETY

2.1 Safety – Coil spring compressor:

- Make certain that the diameter of the compressor bolts can take the pressure of the coil spring. ✓
- Do not exceed the maximum pressure. ✓
- Make sure the compressors are clean and free from oil. ✓
- Ensure that the compressors are in a good working condition. ✓

(Any 2 x 1) (2)

2.2 Safety – Hydraulic Press:

- Take notice of the predetermined pressure of the hydraulic press. ✓
- Ensure the pressure gauge is in a good working order. ✓
- Platform on which the work piece rests must be rigid and square with the cylinder of the press. ✓
- The prescribed equipment must be used. ✓
- Check for oil leaks. ✓

(Any 3×1) (3)

2.3 **Safety – beam bender:**

- Ensure the beam is clamped parallel to the backboard. ✓
- Do not leave plastic beams loaded for any length of time, they tend to creep. ✓
- All the weight must be gently dropped onto the hanger as to reduce inaccuracies due to friction. ✓
- Do not exceed the tester's maximum load. ✓
- Make sure the tester is stable. ✓

(Any 2 x 1) (2)

2.4 **Testers**:

2.4.1 **Brinell Tester:**

• The tester must be mounted rigidly on a worktable. ✓ (1)

2.4.2 **Bearing and gear Puller:**

- Make sure that the puller is at 90° to the work piece before you start to pull. ✓
- Ensure that the clamps are tight and will not slip from the work piece. ✓

(Any 1 x 1) (1)

2.4.3 Torsion tester:

 Get specification (torsion) of the different materials and the size of rods you would like to test. ✓

(1) **[10]**

QUESTION 3: TOOLS AND EQUIPMENT

3.1 Fuel pressure:

- Faulty diaphragm ✓
- Clogged fuel filter ✓
- Faulty non return valves ✓
- Worn gasket ✓

(Any 2 x 1) (2)

3.2 **Precision measuring instruments:**

3.2.1 Depth micro-meter ✓ Vernier calliper ✓

(Any 1 x 1) (1)

3.2.2 Screw-thread micro-meter ✓

(1)

3.3 Depth micro-meter reading:

Reading = $50 + 1,5 + 0,49 \checkmark$ = $51,99 \text{ mm. } \checkmark$

(2)

3.4 Multimeter measurements:

- DC current measurement ✓
- DC voltage measurement ✓
- AC measurement ✓
- Resistance measurement ✓
- Diode measurement ✓
- Continuity measurement ✓

(Any 2×1) (2)

3.5 Trace the cylinder leakage in an engine:

- Listen to at the carburettor for a hissing noise. ✓
- Listen at the exhaust pipe for a hissing noise. ✓
- Listen for hissing noise in the dipstick hole. ✓
- Listen to hissing noise by removing the filler cap on the tappet cover. ✓
- By checking whether there are bubbles in the radiator water for blown cylinder head gasket or cracked cylinder block. ✓

(Any 2 x 1) (2)

3.6 Uses of cooling pressure tester:

- To test if the pressure cap on the cooling system operates according to the prescribed pressure of the system. ✓
- To pump compressed air into the cooling system to determine whether they are any water leakage in the system. ✓

(2) **[12]**

QUESTION 4: MATERIALS

4.1 **Properties/characteristics:**

4.1.1 Cementite:

Hard and brittle ✓√

4.1.2 **Pearlite:**

Good ductility ✓

Very hard ✓

Strong and tough ✓

Resistance to deformation ✓

(Any 2×1) (2)

4.2 Iron –carbon equilibrium diagram

4.2.1 Iron –carbon equilibrium diagram ✓ (1)

4.2.2 A – Ferrite + Pearlite ✓

B – Austenite + Ferrite ✓

C – Austenite ✓

D – Austenite + Cementite ✓

E - Ferrite + Cementite ✓

(5)

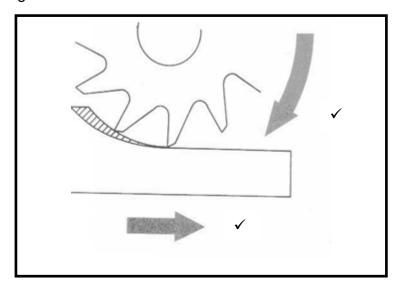
4.2.3 **Austenite:**

Soft, \checkmark grain structure fine \checkmark (2)

4.3 720 °C ✓ (1) [13]

QUESTION 5: TERMINOLOGY

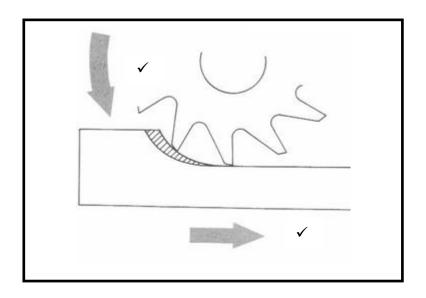
5.1 **Indexing:**


Indexing =
$$\frac{40}{n}$$

= $\frac{40}{118} \div \frac{2}{2}$
= $\frac{20}{59}$

No full turns and 20 holes in a 59-hole plate

(3)


5.2 Milling processes:

• Up-cut milling

(2)

• Downcut milling

(2)

Copyright reserved

5.3 Calculate: Gib head key:

5.3.1
$$Width = \frac{D}{4}$$

$$= \frac{102}{4}$$

$$= 25,5 \text{ mm}$$
(2)

Thickness =
$$\frac{D}{6}$$

$$= \frac{102}{6}$$

$$= 17 \text{ mm}$$
(2)

5.3.3 Length= D×1.5
=
$$102\times1.5$$
 \checkmark
= 153 mm \checkmark (2)

5.3.4 Thickness at smallenqt
$$)=T-\frac{L}{100}$$

$$=17-\frac{153}{100}$$

$$t=17-1,53$$

$$=15,47 \text{ mm} \checkmark \qquad (4)$$

5.4 Calculate – Spur gear:

5.4.1 Addendum = m =
$$3 \text{ mm} \checkmark$$
 (1)

5.4.2 Dedendum = 1,157m or = 1,25m
= 1,157 x 3
$$\checkmark$$
 = 1,25 x 3 \checkmark
= 3,47 mm \checkmark = 3,75 mm \checkmark (2)

5.4.3 Clearance = 0,157m or = 0,25m
= 0,157 x 3
$$\checkmark$$
 = 0,25 x 3 \checkmark = 0,75 mm \checkmark (2)

5.4.4
$$Module = \frac{PCD}{T}$$

$$PCD = m \times T$$

$$= 3 \times 60$$

$$= 180 \text{mm} \qquad \checkmark$$
(2)

5.4.5 OD = PCD + 2m
=
$$180 + 2(3)$$

= $180 + 6$
= 186 mm \checkmark (2)

5.4.6 Cutting depth = 2,157 m or = 2,25 m
= 2,157 x 3
$$\checkmark$$
 = 2,25 x 3 \checkmark = 6,75 mm \checkmark (2)

5.4.7 Circular pitch = m x
$$\pi$$

= 3 x π \checkmark
= 9,43 mm \checkmark [2)

QUESTION 6: JOINING METHODS

6.1	Slag inclu	usion ✓		(1)
6.2	ShapUnifoOverUndePeneRoot	nspection defects De of profile ✓ Dermity of surface ✓ Plap ✓ Dercutting ✓ Detertation bead ✓	(Any 4 x 1)	(4)
6.3	WeldJointElect	of incomplete penetration: d speed too fast ✓ t design faulty ✓ trode too large ✓ ent too low ✓	(Any 2 x 1)	(2)
6.4	AdjusCorreCorreCorre	on of lack of fusion st electrode size ✓ ect preparation of joint ✓ ect weld current ✓ ect arc length ✓ ect weld speed ✓	(Any 2 x 1)	(2)
6.5	Destructive test			
	6.5.1	Machinability test ✓		(1)
	6.5.2	Nick-break test ✓		(1)
	6.5.3	Bend test ✓		(1)
6.6	CleanSprayExcesAllowSpray crack.	etration test the weld that needs to be tested. dye onto the surface and leave to penetrate. states dye is cleaned away with a cleaning agent. surface to dry. a developer onto the surface to bring out the dye ye will show all the surface defects.	trapped in the	(7)

6.7	Functions	of MIG/MAGS	components

Wire feed controller 6.7.1

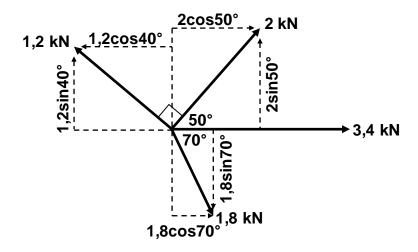
Feeds the consumable electrode wire to the welding gun at a constant predetermined speed. ✓✓

(2)

Welding gun 6.7.2

Activates the supply of gas, power and wire feed ✓ ✓

(2)


6.8 Purpose of inert gas

The inert gas shields the molten pool from the atmospheric gases. ✓ ✓

[25]

QUESTION 7: FORCES

7.1 Forces

$$\Sigma HC = 3.4(\sqrt{)} + 1.8\cos 70^{\circ} (\sqrt{)} - 1.2\cos 40^{\circ} (\sqrt{)} + 2\cos 50^{\circ} (\sqrt{)}$$
$$= 3.4 + 0.62 - 0.92 + 1.29$$
$$= 4.39 \text{ kN } (\sqrt{)}$$

OR

Horizontal component	Magnitudes	Vertical component	Magnitudes
-1,2cos40°✓	-0,92 kN	1,2sin40√	0,77
3,4 ✓	3,4kN	0	0
2cos50° ✓	1,29kN	2sin50° ✓	1,53
1,8cos70°✓	0,62kN	-1,8sin70°√	1,69
TOTAL	4,39kN ✓	TOTAL	0,61kN ✓

Mechanical Technology

DBE/Feb.-Mar. 2017

$$R^{2} = HC^{2} + VC^{2}$$

$$R = \sqrt{4,39^{2} + 0,61^{2}}$$

$$R = 4,43kN$$

Tan
$$\theta = \frac{VC}{HC}$$

$$= \frac{0.61}{4.39} \checkmark$$

$$\theta = 7.91^{\circ}$$

7.2 Stress and Strain

7.2.1 **Stress:**

$$A = \frac{\pi(D^2 - d^2)}{4}$$

$$A = \frac{\pi(0.098^2 - 0.067^2)}{4}$$

$$= 4.02 \times 10^{-3} \ m^2$$

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{40000}{4,02 \times 10^{-3}}$$

$$\sigma = 9950248,76Pa$$

$$\sigma = 9,95 \text{ MPa}$$
(5)

7.2.2 **Strain:**

$$\epsilon = \frac{\sigma}{E} \qquad \checkmark$$

$$\epsilon = \frac{9,95 \times 10^{6}}{90 \times 10^{9}} \qquad \checkmark$$

$$= 0,11 \times 10^{-3}$$
or 1,11 \times 10^{-4} \quad \forall (3)

Copyright reserved

DBE/Feb.-Mar. 2017

(6) **[30]**

7.2.3 Change in length

$$\varepsilon = \frac{\Delta l}{ol}$$

$$\Delta l = \varepsilon \times ol$$

$$= (0.11 \times 10^{-3}) \times 0.08$$

$$= 8.8 \times 10^{-6} \, \text{m}$$

$$= 8.8 \times 10^{-3} \, \text{mm}$$
(3)

7.3 Moments

Calculate A. Moments about B

$$\sum RHM = \sum LHM$$

$$(A \times 11,6) = (200 \times 5,8) + (928 \times 5,8) + (600 \times 2,8)$$

$$11,6A = 1160 + 5382,4 + 1680$$

$$\frac{11,6A}{11,6} = \frac{8222,4}{11,6}$$

$$A = 708,83 \text{ N}$$

Calculate B. Moments about A

$$\sum LHM = \sum RHM$$

$$(B \times 11,6) = (600 \times 8,8) + (928 \times 5,8) + (200 \times 5,8)$$

$$11,6B = 5280 + 5382,4 + 1160$$

$$\frac{11,6B}{11,6} = \frac{11822,40}{11,6}$$

$$B = 1019,17 N$$

QUESTION 8: MAINTENANCE

8.1	Preventative maintenance Can be described as maintenance of equipment or system before a fault occurs.	(2)
8.2	Lock out Locking out means that the machine's start switch cannot be activated without the knowledge of a servicing technician otherwise an accident would occur.	(2)
8.3	Clutch free-play The distance the pedal moves before the slack is taken from the linkage and release bearing. $\checkmark\checkmark$	(2)
8.4	Viscosity index Viscosity index is a measure of how much the oil's viscosity changes as temperature changes. ✓	(1)
8.5	 Replace clutch plate: Worn friction linings. ✓ Weak or broken springs. ✓ Glazed friction linings due to overheating. ✓ Oil on friction linings. ✓ (Any 2 x 1) 	(2)
8.6	Grease – high viscosity To ensure that the grease coats and sticks ✓ to the bearing surfaces it is lubricating. ✓	(2)
8.7	Cutting fluid Mixture of soluble oil ✓ and water. ✓	(2)
8.8	Viscosity of cutting fluid Has a low viscosity to allow easy flow ✓ and effective dissipation of excess heat. ✓	(2) [15]

QUESTION 9: SYSTEMS AND CONTROL

9.1 Gear drives

9.1.1 Rotation frequency of the output shaft

$$\frac{N_{INPUT}}{N_{OUTPUT}} = \frac{T_B \times T_D}{T_A \times T_C}$$

$$N_{OUTPUT} = \frac{T_A \times T_C}{T_B \times T_D} \times N_{INPUT}$$

$$N_{IOUTPUT} = \frac{18 \times 16}{36 \times 46} \times 1660$$

$$= 288,70 \text{ r/min}$$
(3)

9.2.2 Velocity Ratio

$$VR = \frac{N_{INPUT}}{N_{OUTPUT}}$$

$$= \frac{1660}{288,70}$$

$$= 5,75:1$$
 (2)

9.2 Belt Drives

9.2.1 Rotation frequency of the driver pulley

$$V = \frac{\pi(D+t) \times N}{60}$$

$$N = \frac{V \times 60}{\pi(D+t)}$$

$$N = \frac{36 \times 60}{\pi(230+12) \times 10^{-3}}$$

$$= 2841,11 \text{ r/min}$$
(4)

9.2.2 Power transmitted

$$\frac{T_1}{T_2} = 2.5$$

$$T_1 = 2.5 \times T_2$$

$$= 2.5 \times 110$$

$$= 275 \text{ N}$$

$$P = (T_1 - T_2)V$$

$$P = (275 - 110) \times 36$$

$$= 5940W$$

$$= 5.94 \text{ kW}$$

$$(4)$$

9.3 **Hydraulics**

9.3.1 Fluid pressure

 $A_B = \frac{\pi D^2}{4}$

$$= \frac{\pi \times 0.075^{2}}{4}$$

$$= 4.42 \times 10^{-3} \text{ m}^{2}$$

$$P_{B} = \frac{F}{A_{B}}$$

$$= \frac{700 \times 10}{4.42 \times 10^{-3}} \text{ Pa}$$

$$= 1583710,41 \text{ Pa}$$

$$= 1583,71 \text{ kPa}$$

$$(4)$$

9.3.2 Effort on piston A

$$A_{A} = \frac{\pi D^{2}}{4}$$

$$= \frac{\pi \times 0.04^{2}}{4}$$

$$= 1,256 \times 10^{-3} \text{ m}^{2}$$

$$P_{A} = \frac{F_{A}}{A_{A}}$$

$$F_{A} = P_{A} \times A_{A}$$

$$= (1583,71 \times 10^{3}) \times (1,256 \times 10^{-3})$$

$$= 1990,10 \text{ N}$$

$$= 1,99 \text{ kN}$$
(4)

9.4 **ABS**

Prevents wheel from locking during heavy breaking. 🗸 (2)

9.5 **Seat belt**

A seat belt has to be activated for its safety to be functional. $\checkmark\checkmark$ (2) [25]

QUESTION 10: TURBINES

10.1 **Impulse Turbine**

- Waterwheel ✓
- Pelton √
- Turgo ✓
- Michell Banki/Crossflow/Ossberger√
- Jonval turbine ✓
- Reverse overshot waterwheel ✓
- Archimedes' screw turbine ✓

(Any 2 x 1) (2)

10.2 Water turbine

10.2.1 • Water turbine ✓

- Kaplan-turbine ✓
- Reaction turbine ✓

(Any 1 x 1) (1)

10.2.2 **Parts**

A – Wicked gate ✓

B – Rotor ✓

C – Stator ✓

D – Shaft ✓

E – Water-flow ✓

F – Blades ✓

(6)

10.2.3 Advantages of water turbine

- Low maintenance ✓
- No need for lubrication ✓
- Fewer moving parts ✓
- Environmental friendly ✓
- Cost effective ✓

(Any 2 x 1) (2)

10.3 Turbines

10.3.1 Advantage of supercharger:

- Increases the output power of the engine. ✓
- A smaller engine fitted with a centrifugal blower delivers the same power as a larger engine. ✓
- It eliminates lack of oxygen above sea level. ✓
- Increases the volumetric efficiency of the engine. ✓
- With the aid of the intercooler both the power and the torque output of the engine are increased. ✓

(Any 2×1) (2)

10.3.2 Advantages of steam turbines:

- It is compact. ✓
- No lubrication is required. ✓
- Steam turbine speeds can be more accurately regulated. ✓
- A variety of fuels can be used to obtain steam. ✓
- Steam turbines are more economical. ✓
- Higher speeds can be obtained as compared to internal combustion engine. √
- Convert heat energy into mechanical energy. ✓

(Any 2 x 1) (2)

10.3.3 Advantages of gas turbines:

- Very high power to weight ratio ✓
- Smaller than most reciprocating engines of the same power rate √
- Moves in one direction only, with far less vibration ✓
- Low operating pressures ✓
- High operating speeds ✓
- Low lubricating oil cost and consumption ✓

(Any 2 x 1) (2)

10.4 Turbo lag

 It is a delay ✓ between pushing on the accelerator ✓ and feeling turbo kick in. ✓

(3) **[20]**

TOTAL: 200