basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

This memorandum consists of 14 pages.

INSTRUCTIONS TO MARKERS

1. All questions with multiple answers imply that any relevant, acceptable answer should be considered.
2. Calculations:
2.1 All calculations must show the formula.
2.2 All answers must show the correct unit to be considered.
2.3 Alternative methods must be considered, provided that the same answer is obtained.
2.4 Where an erroneous answer is to be carried over to the next step, the first answer will be deemed incorrect. However, should the incorrect answer be carried over correctly, the marker has to recalculate the values, using the incorrect answer from the first calculation. If correctly used, the learner should receive the full marks for subsequent calculations.
3. The memorandum is only a guide with model answers. Alternative interpretations must be considered, and marked on merit. However, this principle should be applied consistently throughout the marking session at ALL marking centres.

QUESTION 1: TECHNOLOGY, SOCIETY AND THE ENVIRONMENT

1.1 1.1.1 There are many inventions. All answers must be accepted if it is given in the electrical technology context.
EG
Cellular devices \checkmark
Electric driven motor cars
Solar devices
PLC control
1.1.2 Answer must be according to answer in 1.1.1

There may be many different answers.
Cellular devices: \checkmark Cellular devices have given many more people access to information which has allowed for far greater growth of individuals than ever before.
1.2 1.2.1 The generation of power allows for growth in our industries. \checkmark Creates employment for people.
1.2.2 With the generation of power there is always pollution \checkmark as a result of this generation which has a negative impact on the environment \checkmark
1.3 Must have the following skills: financial/accounting \checkmark, marketing, communication, time management.
(Any correct relevant answer)
1.4 Entrepreneurs generate their own employment \checkmark which in return creates employment for others.

QUESTION 2: TECHNOLOGICAL PROCESS

2.1 Primary cells \checkmark

Secondary cells \checkmark
Solar cells \checkmark
Power supply converters
Normal 220 volt AC supply
DC power
AC/DC converters or adaptors.
(Any three)
2.2 A design specification gives the parameters as guidance in solving a problem. \checkmark
It is a general description of the type of devices used to solve a problem. \checkmark It allows you flexibility regarding the type of products used.
It mentions all aspects such as safety, size, materials etc. (Any two)
2.3 Any answer in electrical context must be considered. Example: Control box must be water and fire proof.
2.4 To solve a problem. \checkmark

To prove hypothesis. \checkmark
To explain phenomenon. \checkmark
To identify problem stages and make changes.
(Any three)

QUESTION 3: OCCUPATIONAL HEALTH AND SAFETY

3.1 Inadequate guards. \checkmark Bad ventilation. Rough or slippery floors. No personal protection equipment. Insufficient/Bad lighting. A disorganised workshop.
(Any four)
3.2 Safety signs should be provided where necessary to warn of hazards, \checkmark to prevent dangerous practices, \checkmark and to indicate safe exits and safe practices. \checkmark
3.3 The workforce is made up with skilled and semi-skilled people that need to be trained and cost the country money \checkmark. HIV-AIDS results in people getting sick, absence from work \checkmark low productivity and loss of human resources. \checkmark

QUESTION 4: THREE-PHASE AC GENERATION

4.1 For alternators of similar frame size, three-phase machines produce more power than single - phase machines.
Three-phase alternators can be connected in parallel to obtain a combined power output.
Three-phase power is cheaper to generate than single - phase power of the same power rating.
Three-phase alternators can supply both three and single - phase power.
(Any two)
4.2 Add power factor correcting capacitors in parallel with the load. \checkmark Make use of synchronous motors.
Make use of an AVR in correcting the power factor (alternating automatic voltage regulator).
(Any two)
$4.3 \quad 4.3 .1$

$$
\begin{align*}
P_{I N} & =\sqrt{3} V_{L} I_{L} \cos \theta \quad \checkmark \\
& =\sqrt{3} \times 380 \times 25 \times 0.9 \\
& =14.81 \mathrm{~kW} \quad \checkmark \tag{3}
\end{align*}
$$

$$
\text { 4.3.2 } \quad \begin{align*}
S & =\sqrt{3} V_{L} I_{L} \quad \checkmark \\
& =\sqrt{3} \times 380 \times 25 \quad \\
& =16.45 \mathrm{kVA} \tag{3}
\end{align*}
$$

QUESTION 5: RLC CIRCUITS

5.1 Watt less voltage divider \checkmark

Timing circuits \checkmark
Filter circuits
Oscillating circuits
Radio-tuning circuits
Power factor correction circuits
(Any two)

5.2 5.2.1 Decrease \checkmark

5.2.2 If the frequency of the supply increases, the capacitive reactance \checkmark and thus the impedance will decrease \checkmark causing the current to increase \checkmark and thus the brightness of the lamp will increase. \checkmark
5.3 Capacitive reactance is the opposition offered \checkmark by the capacitor to the flow of current in a RC circuit \checkmark when the circuit is connected across an alternatingvoltage supply and it is measured in ohms.
5.4 5.4.1 $\quad X_{L}=2 \pi f L \quad \checkmark$

$$
\begin{align*}
& =2 \times \pi \times 50 \times 0.22 \\
& =69.12 \Omega \tag{3}
\end{align*}
$$

5.4.2

$$
\begin{align*}
X_{C} & =\frac{1}{2 \pi f C} \\
& =\frac{1}{2 \times \pi \times 50 \times\left(55 \times 10^{-6}\right)} \\
& =57.87 \Omega \tag{3}
\end{align*}
$$

5.4 .3

$$
\begin{align*}
I_{L} & =\frac{V}{X_{L}} \\
& =\frac{220}{69.12} \\
& =3.18 \mathrm{~A} \tag{3}
\end{align*}
$$

$$
\begin{align*}
I_{C} & =\frac{V}{X_{C}} \quad \checkmark \\
& =\frac{220}{57.87} \\
& =3.8 \mathrm{~A} \tag{3}\\
I_{R} & =\frac{V}{R} \\
& =\frac{220}{47} \\
& =4.68 \mathrm{~A} \tag{3}
\end{align*}
$$

5.4.4 $\quad I_{S}=\sqrt{I_{R}{ }^{2}+\left(I_{C}-I_{L}\right)^{2}} \quad \checkmark$

$$
=\sqrt{4.68^{2}+(3.18-3.8)^{2}}
$$

$$
\begin{equation*}
=4.72 \mathrm{~A} \quad \checkmark \tag{3}
\end{equation*}
$$

5.5 $\quad V_{S}=\sqrt{V_{R}{ }^{2}+\left(V_{L}-V_{C}\right)^{2}}$

$$
=\sqrt{100^{2}+(261-65)^{2}}
$$

$$
=220 \mathrm{~V}
$$

QUESTION 6: SWITCHING AND CONTROL CIRCUITS

6.1

Drawing without labels = 1 mark
6.2 A voltage \checkmark of either polarity must be applied across the terminals of the TRIAC and then when a trigger signal is applied to the Gate, \checkmark the TRIAC will conduct.

OR

A voltage of either polarity is applied across the terminals of the TRIAC \checkmark and increased until it reaches $\mathrm{V}_{\text {BO }}$ of the TRIAC it will then conduct. \checkmark
6.3 A TRIAC conducts in both directions \checkmark and an SCR can only conduct in one direction.

OR

The TRIAC gives full wave control in a circuit while a SCR control only half wave of the circuit
$\begin{array}{lll}\text { 6.4 6.4.1 } & \left.\begin{array}{l}\text { Amps } \checkmark \\ \\ \\ \\ \text { Volts } \checkmark\end{array}\right)\end{array}$
6.4.2 At point 3, the internal resistance of the DIAC decreases rapidly.

The current flow in the DIAC will INCREASE \checkmark and the voltage across the DIAC will DECREASE \checkmark rapidly.
6.4.3 The voltage supply across \checkmark the DIAC must be removed. OR
The current through the DIAC must be lowered below the holding current of the DIAC it will then switch off.
6.5 6.5.1 R_{1} limits the current to protect the diode when R_{2} is set at its minimum.
6.5.2 The control of the brightness of the lamp depends upon the value of R_{2} and the value of the capacitor. \checkmark The time constant is calculated by $t=5 R C$. \checkmark Therefore if R_{2} is changed the time for the capacitor to charge will also change. \checkmark This will change the time it takes the voltage to reach the voltage that triggers the gate of the SCR \checkmark and fire the SCR into conduction therefore controlling the brightness of the lamp.

6.5.3

QUESTION 7: AMPLIFIERS

7.1 Open-loop voltage gain $A_{V}=$ infinite \checkmark

Input impedance $Z_{\text {IN }}=$ infinite \checkmark
Output impedance $Z_{\text {OUT }}=$ zero \checkmark
Bandwidth = infinite
Unconditional stability
Differential inputs, i.e. two inputs
Infinite common mode rejection
(Any three)
7.2 7.2.1 Voltage comparator.
7.2.2

7.3 7.3.1 Positive feedback \checkmark
7.3.2 1 - Summing point \checkmark

2 - Amplifier circuit \checkmark
3 - feedback circuit \checkmark
7.4 Negative feedback allows control of gain, \checkmark input and output impedance and bandwidth.
OR
The negative feedback reduces distortion of the output and makes the output more predictable.

7.6 Signal amplification \checkmark

Wave shaping \checkmark
Process control
Instrumentation (both analogue and digital)
Oscillators
Filters
Analogue to digital conversions
(Any two)
7.7 The gain is not infinite

Small input bias currents flow \checkmark
Limited in their current drive capability at the output
Cannot handle all possible frequencies. Gain reduced when input signal frequency reaches high values
(Any two)
7.8

QUESTION 8: THREE-PHASE TRANSFORMERS

8.1 8.1.1 Primary winding \checkmark

Secondary winding \downarrow
8.1.2 Star-Delta \checkmark

Star-Star
Delta-Star
Delta-Delta
8.1.3 The transformer is a step-down transformer. \checkmark Therefore the secondary current will be greater than the primary current \checkmark which in turn results that the secondary windings must be a thicker gauge.

8.2 Given:

$\mathrm{P}_{\text {OUt }}=12 \mathrm{~kW}$
$\eta=100 \%$
$\operatorname{Cos} \theta=0,8$
8.2.1

$$
\begin{aligned}
S & =\frac{P}{\cos \theta} \\
& =\frac{12000}{0.8} \\
& =15 \mathrm{kVA}
\end{aligned}
$$

8.2.2 Copper losses: \checkmark

Copper losses are the $I^{2} R$ losses, due to the internal resistance of the copper wires \checkmark that are dissipated in the form of heat.
OR
Iron Losses:
The losses incurred due to the hysteresis curve of the type of iron used, resulting in eddy current flow.
Stray Losses:
Losses incurred due to stray inductance that does not flow through the iron core and as a result does not induce current in the secondary coil.
Dielectric losses:
The losses due to damage to the insulation, allowing small leakage currents to flow, thus affecting the operation of the transformer.
(Any one)
8.2.3 If the load is decreased both the primary and secondary currents would also decrease. \checkmark The primary and secondary voltages remain constant \checkmark therefore if the power decreases the currents must decrease.

QUESTION 9: LOGIC CONCEPTS AND PLCs

9.1

9.2 PLCs are used to automate machinery in assembly lines \checkmark and were developed as substitute for large relay-based panels.
9.3 It is a graphical language \checkmark and method of programming \checkmark a PLC. \checkmark
9.4 Synchronous counters \checkmark

Asynchronous counters \checkmark
Up counters
Down counters
(Any two)
(2)
9.5 Inputs \checkmark

Outputs \checkmark
Timing devices \checkmark
Counting devices
Internal relay/flags
Logic operands
(Any three)
$9.6 \quad 9.6 .1$

9.6.2

9.6.3

9.7
9.7.1

9.7.2 OR-gate \checkmark
9.7.3

A	B	F
0	0	
0	\checkmark	
0	1	1
	\checkmark	
	\checkmark	
1	0	1
	\checkmark	
1	1	1
	\checkmark	

9.7.4

9.8 9.8.1 Direct on line starter \checkmark
9.8.2

9.8.3 Motor starter for motors smaller than $4 \mathrm{~kW} \checkmark$

QUESTION 10: THREE-PHASE MOTORS AND CONTROL

10.1 Stator. \checkmark

Rotor.
End plates. \checkmark
Fan
Terminal box
Bearings
End shields
(Any three)
10.2 Copper losses.

Magnetic or iron losses
Mechanical losses
(Any one)
10.3 Conveyors \checkmark

Lifts \checkmark
Hoists \checkmark
Elevators
Air conditioning
Extractors
Refrigeration
Boreholes
Pumps
Fans
Distribution plants
Ovens
Furnaces
(Any three)
10.4 To immediately interrupt the supply to a machine \checkmark to ensure the safety of the operator and the machine.
10.5 It must be located so that the operator has easy access to the switch in the event of an emergency.
10.6 When a short circuit occurs in a winding the resistance of the winding drops \checkmark allowing increased current to flow that can cause damage to the motor.
10.7 It is important to do the test because if the reading is not correct, it could indicate a fault \checkmark which could lead to an electric shock, \checkmark which could lead to risk of injury to the operator.
10.8 The function of the overload unit is to protect \checkmark the motor in the event of an overload of current \checkmark and set to interrupt the circuit when the current rises above the maximum level for a prolonged period \checkmark
10.9 The function of a star-delta starter is used to reduce the starting current \checkmark of a three-phase motor to prevent tripping at start \checkmark of the motor as when a motor starts it draws more than normal full load current.
10.10 10.10.1 $P=\sqrt{3} V_{L} I_{L} \cos \phi$

$$
\begin{align*}
I_{L} & =\frac{P}{\sqrt{3} V_{L} \cos \phi} \\
& =\frac{5000}{\sqrt{3} \times 380 \times 0.8} \\
& =9.49 \mathrm{~A} \quad \checkmark \tag{3}
\end{align*}
$$

10.10.2 $\quad I_{L}=\sqrt{3} I_{P H}$
$I_{P H}=\frac{I_{L}}{\sqrt{3}}$

$$
=\frac{9.49}{\sqrt{3}}
$$

$$
=5.48 \mathrm{~A}
$$

10.11 If the power factor of the motor was improved \checkmark the motor will draw a lower current to deliver the same power \checkmark therefore the apparent power will be reduced.

